]> git.sthu.org Git - libstick.git/blob - include/libstick/simplicialcomplex.h
Fix persistence comp. in interpret_persistence()
[libstick.git] / include / libstick / simplicialcomplex.h
1 #ifndef simplicialcomplex_h_nealaezeojeeChuh
2 #define simplicialcomplex_h_nealaezeojeeChuh
3
4 #include <stdint.h>
5 #include <cstdlib>
6 #include <cstring>
7 #include <algorithm>
8 #include <vector>
9 #include <limits>
10
11 #include <iostream>
12
13 #include "booleanmatrix.h"
14
15
16 namespace libstick {
17
18 /** A simplicial complex is a collection of simplices such that each face is
19 * also part of the complex. Every simplex has dimension at most MAXDIM. The
20 * indices of simplices and their faces are of type IT. When a
21 * simplicial_complex is instantiated, a single (-1) dimensional simplex is
22 * automatically created. (When we compute persistent homology, we actually
23 * compute reduced homology.) Each 0-dimensional simplex automatically has this
24 * simplex as its face.
25 *
26 * Based on a simplicial complex, we define a simplicial order. An order
27 * can be seen as a permutation of the simplices of the complex. If the order
28 * has the property that every prefix of the permutation is again a complex,
29 * i.e., all faces of all simplices of each prefix are contained in the prefix,
30 * then we call it a filtration. The innner class simplex_order gives the
31 * extended boundary matrix, which can then be used in the persistence class to
32 * compute persistent homology.
33 *
34 * One way to obtain a filtration is to define a monotone simplicial function
35 * on the complex. That is, each simplex gets a value of type VT assigned. Then
36 * one can obtain a sub-level set filtration from the complex w.r.t. to this
37 * simplicial function.
38 */
39 template<int MAXDIM, class IT>
40 class simplicial_complex {
41
42 public:
43 /** The type of this class. */
44 typedef simplicial_complex<MAXDIM, IT> simplcompltype;
45 /** Type of indices of simplices. */
46 typedef IT index_type;
47
48 /** A simplex of the complex. This struct is an aggregate. */
49 struct simplex {
50 /** Dimension of the simplex. */
51 int dim;
52 /** The indices of the faces of the simplex. */
53 index_type faces[MAXDIM+1];
54
55 /** Create a new simplex with dimension 'dim' and (dim+1)-faces. If
56 * the simplex is 0-dimensional, its face is automatically set to
57 * one (-1)-dimensional simplex. */
58 static simplex create_simplex(int dim, index_type* faces) {
59 assert(0 <= dim && dim <= MAXDIM);
60
61 simplex s = {dim, {0}};
62
63 if (dim >= 1)
64 memcpy(s.faces, faces, face_count_bydim(dim)*sizeof(index_type));
65
66 return s;
67 }
68
69 /** Create a (-1)-dimensional simplex. */
70 static simplex create_minusonedim_simplex() {
71 simplex s = {-1, {0}};
72 return s;
73 }
74
75 /** Get number of faces. */
76 size_t face_count() const {
77 return face_count_bydim(dim);
78 }
79
80 /** Get number of faces of a dim-dimensional simplex. */
81 static size_t face_count_bydim(int dim) {
82 assert(-1 <= dim && dim <= MAXDIM);
83 return dim + 1;
84 }
85 };
86
87 /** An order of the simplices of complex c. An order can be interpreted
88 * as a permuation of the complex's std::vector of simplices. */
89 class simplex_order {
90
91 public:
92 typedef boolean_colmatrix<IT> boundary_matrix;
93 typedef std::vector<IT> order_type;
94
95 /** Create a standard order of the complex c, i.e., the identity permutation. */
96 simplex_order(const simplcompltype &c) :
97 c(c) {
98 reset();
99 }
100
101 /** Reset order to the identity permutation of the complex's simplices. */
102 void reset() {
103 order.clear();
104 for (unsigned i=0; i < c.size(); ++i)
105 order.push_back(i);
106 revorder = order;
107 }
108
109 /** Return number of simplices. */
110 size_t size() const {
111 assert(order.size() == revorder.size());
112 return order.size();
113 }
114
115 /** Get i-th simplex in the simplex order. */
116 const simplex& get_simplex(index_type i) const {
117 return c.simplices.at(order_to_complex(i));
118 }
119
120 /** Translate an index in the order to a simplex in the complex. */
121 index_type order_to_complex(index_type i) const {
122 assert(0 <= i && i < size());
123 return order.at(i);
124 }
125
126 /** Translate an index in the complex to a simplex in the order. */
127 index_type complex_to_order(index_type i) const {
128 assert(0 <= i && i < size());
129 return revorder.at(i);
130 }
131
132 /** Return the underlying complex. */
133 const simplcompltype& get_complex() const {
134 return c;
135 }
136
137 /** Check if this order is a permutation of the underlying
138 * complex. */
139 bool is_permutation() const {
140 if (size() != c.size())
141 return false;
142
143 // Sort the index array and check if every index is present.
144 order_type o = order;
145 std::sort(o.begin(), o.end());
146 for (unsigned i=0; i < size(); ++i)
147 if (o.at(i) != i)
148 return false;
149
150 return true;
151 }
152
153 /** Returns true iff the faces of simplex i are before i in
154 * this order. */
155 bool is_filtration() const {
156 assert(size() == c.size());
157
158 for (unsigned i=0; i < size(); ++i)
159 for (unsigned f=0; f < get_simplex(i).face_count(); ++f)
160 if (complex_to_order(get_simplex(i).faces[f]) >= i)
161 return false;
162
163 return true;
164 }
165
166 /** Randomize order. It has hardly any impact on runtime, but
167 * it makes cycles "nicer" when then making order monotone
168 * w.r.t. a simplicial function. */
169 void randomize_order() {
170 std::random_shuffle(order.begin(), order.end());
171 restore_revorder_from_order();
172 }
173
174 /** Get the boundary matrix of the complex according to this
175 * order. Requires that is_permutation() gives true. */
176 boundary_matrix get_boundary_matrix() const {
177 assert(is_permutation());
178 boundary_matrix mat(size());
179
180 for (unsigned c=0; c < size(); ++c)
181 for(unsigned r=0; r < get_simplex(c).face_count(); ++r)
182 mat.set(complex_to_order(get_simplex(c).faces[r]), c, true);
183
184 return mat;
185 }
186
187 /** Get the order of the simplices. */
188 const order_type& get_order() const {
189 return order;
190 }
191
192 /** Set the order of the simplices. Requires that order has the
193 * same size as the underlying complex. Requires that the
194 * is_permutation() gives true after setting the order. */
195 void set_order(const order_type& o) {
196 assert(o.size() == c.size());
197
198 order = o;
199 restore_revorder_from_order();
200 }
201
202 private:
203 /** Reconstruct 'revorder' by inverting the permutation given by 'order'. */
204 void restore_revorder_from_order() {
205 assert(is_permutation());
206
207 // Make revorder * order the identity permutation
208 for (unsigned i=0; i < size(); ++i)
209 revorder[order[i]] = i;
210 }
211
212 /** The complex of which we consider a simplex order. */
213 const simplcompltype &c;
214
215 /** The i-th simplex in order is the order[i]-th simplex of the
216 * complex. 'order' can be seen as a permutation of the
217 * simplices saved in 'c'. */
218 order_type order;
219
220 /** The i-th simplex in the complex is the revorder[i]-th
221 * simplex in order. 'revorder' can be seen as the inverse
222 * permutation saved in 'order'. */
223 order_type revorder;
224 };
225
226 public:
227 simplicial_complex() {
228 // Add the one and only minus-one dimensional simplex
229 simplices.push_back(simplex::create_minusonedim_simplex());
230 }
231
232 /** Remove all simplices except the dummy simplex */
233 void clear() {
234 simplices.resize(1);
235 }
236
237 /** Return number of simplices. */
238 size_t size() const {
239 return simplices.size();
240 }
241
242 /** Add a simplex to the complex. The dimension of the faces must be
243 * dim-1, and they must already be part of the complex. Returns the
244 * index of the added simplex. */
245 index_type add_simplex(int dim, index_type* faces) {
246 return add_simplex(simplex(dim, faces));
247 }
248
249 /** Add a simplex to the complex. The dimension of the faces must be
250 * dim-1, and they must already be part of the complex. Returns the
251 * index of the added simplex. The dimension must be at least zero. */
252 index_type add_simplex(simplex s) {
253 assert(s.dim >= 0);
254
255 // Check requirements for faces
256 for (unsigned i=0; i < s.face_count(); ++i) {
257 // Faces are already in complex.
258 assert(s.faces[i] < size());
259 // Faces have dimension dim-1
260 assert(simplices[s.faces[i]].dim == s.dim-1);
261 }
262
263 // index_type must be large enough
264 assert(simplices.size() < std::numeric_limits<IT>::max());
265
266 index_type idx = simplices.size();
267 simplices.push_back(s);
268 return idx;
269 }
270
271 /** Add an array of simplices */
272 void add_simplices(simplex* sarray, size_t count) {
273 for (unsigned i=0; i < count; ++i)
274 add_simplex(sarray[i]);
275 }
276
277 /** Get idx-th simplex */
278 const simplex& get_simplex(index_type idx) const {
279 assert(0 <= idx && idx < size());
280 return simplices.at(idx);
281 }
282
283 /** Return true iff for each simplex i with dimension dim it holds that
284 * the faces of i are contained in the complex and have dimension dim-1. */
285 bool is_complex() const {
286 for (unsigned i=0; i < size(); ++i) {
287
288 const simplex &s = simplices[i];
289 for (unsigned f=0; f < s.face_count(); ++f) {
290
291 if (s.faces[f] >= size())
292 return false;
293
294 const simplex &face = simplices[s.faces[f]];
295 if (face.dim != s.dim-1)
296 return false;
297 }
298 }
299 return true;
300 }
301
302 private:
303 /** A list of simplices */
304 std::vector<simplex> simplices;
305 };
306
307 }
308
309
310 #endif